您现在的位置是: 首页 > 教育改革 教育改革
高考函数专题复习-高考函数经典例题
tamoadmin 2024-10-27 人已围观
简介1.高考摸题--函数2.高考数学常用三角函数公式总结3.高三文科数学常考题型归纳4.急!怎么做对高考数学三角函数大题!5.高考数学常考必考题型是什么?6.还有30天就要高考了,数学还很差,怎么复习啊?高考摸题--函数已知函数f(x)=ln[e^x+a](a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数。(1)求a的值。(2)若g(x)t?+λt+1在x
1.高考摸题--函数
2.高考数学常用三角函数公式总结
3.高三文科数学常考题型归纳
4.急!怎么做对高考数学三角函数大题!
5.高考数学常考必考题型是什么?
6.还有30天就要高考了,数学还很差,怎么复习啊?
高考摸题--函数
已知函数f(x)=ln[e^x+a](a为常数)是实数集R上的奇函数,
函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数。
(1)求a的值。
(2)若g(x)≤t?+λt+1在x∈[-1,1]上恒成立,求t的取值范围。
(3)讨论关于x的方程(lnx)/f(x)=x?-2ex+m的根的个数。
(1)f(x)是奇函数--->f(0)=0,即ln(1+a)=0--->a=0
(2)--->f(x)=x--->g(x)=λx+sinx是区间[-1,1]上的减函数
--->g'(x)=λ+cosx≤0在区间[-1,1]上恒成立--->λ≤-1
--->g(x)=λx+sinx在[-1,1]上的最大值=g(-1)=-(λ+sin1)
g(x)≤t?+λt+1在x∈[-1,1]上恒成立即:g(-1)≤t?+λt+1成立
--->t?+λt+(1+λ+sin1)≥0--->λ(t+1)≥-(t?+1+sin1)
∵λ≤-1,∴(t+1)<0且-(t?+1+sin1)/(t+1)≥-1
--->t?+1+sin1≥t+1--->t?-t+sin1≥0,
Δ<0显然成立
--->t<-1
(3)(lnx)/f(x)=x?-2ex+m?
高考数学常用三角函数公式总结
数学知识点很多,只有进行 总结 ,才能发现重点难点,下面就是我给大家带来的,希望大家喜欢!
高考数学公式总结
高考数学三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)
(注:SinA2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
三角函数辅助角公式
Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中
sint=B/(A2+B2)’(1/2)
cost=A/(A2+B2)’(1/2)
tant=B/A
Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B
降幂公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
三角函数推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a
cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa
sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina 2sin[(60+a)/2]cos[(60°-a)/2] 2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa 2cos[(a+30°)/2]cos[(a-30°)/2] {-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三角函数半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角函数三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
三角函数两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函数和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三角函数积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
三角函数诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan’(α/2)]
cosα=[1-tan’(α/2)]/1+tan’(α/2)]
tanα=2tan(α/2)/[1-tan’(α/2)]
其它 公式
(1)(sinα)2+(cosα)2=1
(2)1+(tanα)2=(secα)2
(3)1+(cotα)2=(cscα)2
证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:A+B=π-Ctan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得tanA+tanB+tanC=tanAtanBtanC
得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC
(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π 2/n)+sin(α+2π 3/n)+……+sin[α+2π (n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π 2/n)+cos(α+2π 3/n)+……+cos[α+2π (n-1)/n]=0以及
sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
高考数学 记忆 方法
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。例如,平行四边形的性质,我们只要记住它的定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。
三、标志记忆法
在学习某一章节知识时,先看一遍,对于重要部分用彩笔在下面画上波浪线,再记忆时,就不需要将整个章节的内容从头到尾逐字逐句的看了,只要看划重点的地方并在它的启示下就能记住本章节主要内容,这种记忆称为标志记忆。
四、回想记忆法
在重复记忆某一章节的知识时,不看具体内容,而是通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时,回想记忆法与标志记忆法是配合使用的。
高考数学复习建议
初次学习和再次复习不同。绝大部分考生在高一高二两年的时间中进行的都是新知识新理论的学习,这是初次认识初次接触的过程,我们称之为初次学习,这个过程强调的是认知、接受和掌握。而高三将近一年的时间考生几乎接触的都是之前两年当中见过的理解了的但是很多已经遗忘的内容,我们将这个过程称之为再次复习。再次复习除了恢复考生对相应知识点的记忆之外,更重要的在于将知识点升华为考点,这个过程重视的是理解、综合与应用。两个过程截然不同,必然导致我们应对的策略也要有所变化。
学习和复习的主线不同。学习的主线我们应该都很熟悉,看一看教材的目录就非常明确了:高一高二两年当中一定是以章节为单位,一个知识点接一个知识点按部就班地介绍和学习。每个章节内部也是基本遵循“定义—定理—公式—经典例题—实际应用—练习”这样由简到繁的内容安排。而二次复习如果也采用这样的模式,导致的直接结果就是,考生按知识点分块的模式分章节去解题会很顺利,一旦拿过来一份高考试卷,遇到里面的综合性题目却无从下手,这就是平时考生经常遇到的问题——没有解题思路。
最有效的复习模式——以题型为主线。结合以上讨论的两点内容,建议考生在复习过程中尤其是最后一轮复习中一定要以当地高考常考题型为主线,以题型为主线逐步建立自己在考试当中的解题思路。以题型为主线的复习方式有以下三点优势:
第一,可以将零散的知识点从题型的角度进行二次深入的梳理,把知识认知阶段进化为知识应用阶段,达到高考要求。
第二,题型为主线可以简化思维过程,头脑中不再是孤零零的点,而是形成模块化的解题套路。
第三,掌握相应知识的常考题型比起简单掌握知识点能够更快更大幅度地在考试中提高分数。很多考生溺在浩如烟海的知识点当中,尽管花了相当多的时间和精力,但是收效甚微,甚至由此认为高中数学很难学。如果能够转变一下复习思路,相信一定可以柳暗花明。
高考数学常用三角函数公式总结相关 文章 :
★ 高考数学三角函数公式口诀
★ 高考数学常用的诱导公式总结
★ 高中数学必修四三角函数万能公式归纳
★ 三角函数的公式归纳总结
★ 必修四数学三角函数公式汇总
★ 高中数学三角函数高考题汇编
★ 高考数学常考知识点总结
★ 2020高考数学知识点总结大全
★ 高一数学必背公式及知识汇总
★ 高考数学复合函数知识点归纳
高三文科数学常考题型归纳
文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!
文科数学常考题型有哪些
圆/坐标系与参数方程/不等式
一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。
函数
一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。
解析几何
一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
立体几何
一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。
概率
一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。
三角函数/数列
一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。
文科数学成绩怎么提高文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。
粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将答案写在卷上,达到降低高考恐惧感,增强自信心的目的。
我推荐:高考数学复习重点题型有哪些
“偷懒”的第一要任就在于减少复习的负荷量。数学学习最大的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。
急!怎么做对高考数学三角函数大题!
1.三角函数恒等变形的基本策略。
(1)常值代换:特别是用"1"的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=
-
等。
(3)降次与升次。(4)化弦(切)法。
(4)引入辅助角。asinθ+bcosθ=
sin(θ+
),这里辅助角
所在象限由a、b的符号确定,
角的值由tan
=
确定。
2.证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的"差异分析"。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
高考数学常考必考题型是什么?
高考数学常考的大题分别是三角函数或数列,概率,立体几何,解析几何(圆锥曲线),函数与导数。
高考数学必考知识点归纳:
必修一:集合与函数的概念(部分知识抽象,较难理解);基本的初等函数(指数函数、对数函数);函数的性质及应用(比较抽象,较难理解)。
必修二:立体几何、证明:垂直(多考查面面垂直)、平行求解:主要是夹角问题,包括线面角和面面角。
简介
高考数学会涉及到很多的知识点,所以复习时要面面俱到,否则就可能在高考时遇到不会的题目。选择题和填空题常考的考点主要有集合部分、函数部分、三角形与三角函数、平面向量与复数部分、数量章节、不等式章节、平面与立体几何部分、统计部分、概率部分等。
而解答题主要涉及到的知识有选考部分、正态分布、离散型分布、统计、圆锥曲线、椭圆、曲线与方程、直线与方程、立体几何部分、数列求和、解三角形、导数部分等。当然,以上只是一个大致的高考数学考点分析,每年数学考试内容都会有所调整,但是考试内容都万变不离其宗。
还有30天就要高考了,数学还很差,怎么复习啊?
一.回顾知识、总结方法、突出重点
1.继续强化对基础知识的理解,掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。(备考指南与知识点总结)中学数学的重点知识包括:
(1)**、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆、圆锥曲线的交点、弦长、轨迹等。
(6)概率与统计、算法初步、复数。此专题中概率统计是重点,以摸球、射击问题为背景理解概率问题。
(7)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。
2、对基础知识的复习应突出抓好两点:(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3楼
3、系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。例如以函数为主线的知识链。又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4楼
4、认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
数学思想和方法的考查必然要与数学知识的考查结合进行,在平时的做题中必须提炼出其中的数学思想方法,并以之指导自己的解题。
楼主金榜题名 祝愿啊
下一篇:高考状元黎雨佳-高考状元唐黎